
Designing Task Visualizations to Support the Coordination
of Work in Software Development

Christine A. Halverson, Jason B. Ellis, Catalina Danis, Wendy A. Kellogg
Social Computing Group

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598 USA

(krys, jasone, danis, wkellogg)@us.ibm.com

ABSTRACT
Software development tools primarily focus on supporting the
technical work. Yet no matter the tools employed, the process
followed, or the size of the team, important aspects of
development are non-technical, and largely unsupported. For
example, increasing distribution of development teams highlights
the issues of coordination and cooperation. This paper focuses on
one area: managing change requests. Interviews with industry and
open-source programmers were used to create designs for the
visual inspection of change requests. This paper presents
fieldwork findings and two designs. We conclude by reflecting on
the issues that task visualizations that support social inferences
address in software development.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
evolutionary prototyping, user interfaces H.5.3 [Information
Interfaces and Presentation]: Group and Organization Interfaces
– collaborative computing, computer-supported cooperative work.

General Terms
Design, Human Factors, Management

Keywords
Social Visualization, Change Tracking Systems, Task
Visualization, Information Visualization, Coordination of Work,
Software Development.

1. INTRODUCTION
Imagine that you are a newly hired software developer assigned to
work on a code module that implements a user interface to a
calendar. Another developer, Dave is responsible for the
“backend” data module. As work progresses, you discover that a
change to the backend module will be necessary for your code to
work. You open a change request and assign it to Dave. Sometime
later you are pleased to see the change request marked resolved,

but when you try your code again, it still doesn’t work. Inspecting
the backend code, you see that a change has not been made after
all. You go to see Dave, a guy who has been with the team for
years, who insists that his code is working correctly. You do not
give up, and a back and forth, intermittent conversation emerges
over how the backend should or could be implemented. Time
goes on, the issue is not resolved; nothing you suggest or try
seems to work; reasserting the change request just results in
another preemptive resolve. You do not wish to escalate the issue
to management; at least, not yet. One day you mention your
frustration with Dave to a colleague, who surprises you by saying
she has had exactly the same sort of problem with him; in fact, he
is known for this kind of behavior. “The thing is,” she says, “he
only codes to the spec. If you want your change, you’ll have to
get it into the official requirements document.” 1

A foundational assumption in CSCW is that work is socially
organized and cooperative, often in subtle ways that require
understanding the context as well as the specific work practice.
Along these lines, many documented problems in carrying out
cooperative work are about coordinating distributed work,
tracking the state of complex projects, discerning the availability
of remote colleagues, or as in the vignette above, accommodating
the personal quirks or views of a key collaborator, or negotiating
conflicting ideas of what the work is about [5, 28, 36].

Software development has long been recognized as a domain
where some of the most difficult problems are beyond technical
or simple resource issues, as Brooks’ famous 1975 treatise on the
Mythical Man-Month attests [7]. But in the thirty years since this
work, much remains to be done in addressing such issues, which
are often at the heart of CSCW concerns. Indeed, it is possible to
argue that with current trends towards larger and more globally
distributed development teams, coordination, social, and cultural
issues – as well as tangled technical issues – have increased.

The process of handling change requests (CRs) in software
development would appear straightforward. A problem is
discovered and entered into an appropriate repository for tracking.
The CR is assigned to a developer who proceeds to fix the
problem, update the code, and subsequently the CR repository.
The reality, of course, is rarely so straightforward, as many
developers can attest, and as the public nature of Free/Libre Open

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 Vignette is based on several interview accounts. All names have
been changed to protect privacy.

CSCW‘06, November 4-8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011…$5.00.

Source Software (F/LOSS) projects, such as Mozilla, have made
apparent. Access to the products and process of open source
projects—such as code repositories, bug tracking data, and
communication paths in both email and chat rooms—affords a
tantalizing glimpse of the social as well as the technical aspects of
current software development.

The work reported here leverages the visibility of F/LOSS
projects, as well as a collection of semi-structured interviews and
ongoing conversations with informants in a variety of roles and
settings in software development, to better understand the
difficulties and subtleties faced by members of globally
distributed teams. Our findings led us to believe that there were
opportunities to better support distributed development based on
data already available in change tracking systems as a normal
consequence of the development process. As a result, we have
developed a series of visual prototypes that were progressively
refined through follow-up interviews and conversations with
software developers and managers.

The contribution of this paper is twofold. First, through a
combination of interviews with software developers and analysis
of change management systems, we provide a current view of
coordination issues surrounding change management in large,
distributed programming teams. Second, we show through two of
a series of visual design prototypes how information contained in,
but not easily accessed, in change tracking systems can be
harnessed and more appropriately presented to support social
inferences that can aid coordination and management work. The
nature of this undertaking crosses a number of disciplines. Thus,
we begin by briefly reviewing related work on software
development (particularly studies of open source and change
request management) and work on visualization (to aid software
development, and to support social inferences). Next we present
our fieldwork and design prototypes. Finally, we discuss how
interactive visualizations can support distance collaboration and
issues for further work. The extension of this work to the specifics
of various coordination theories—whether specific to Software
Engineering [23] or CSCW in general [28, 36]—is beyond the
scope of this paper.

2. RELATED WORK
Software development requires marshalling many moving parts—
both human and code—until the resulting software product has
been released. In this section we focus on three issues relevant to
CSCW. First, we touch on the study of programming as
cooperative work, focusing on the recent detailed studies of
F/LOSS. Next we review research that focuses on the socio-
technical aspects of managing software changes, particularly in
distributed development. Finally we describe previous work on
visualization in software development, and contrast it to previous
work on social visualization.

2.1 Programming as a Cooperative Activity
Software development was probably less geographically
distributed than it is now, but it has always been distributed over
time – namely, over the lifecycle of a project. Code developed by
an individual programmer was likely to (eventually) be
maintained by someone else, who would take on the
responsibility for fixing bugs detected after release, or adding
features to future releases. Temporal distribution relegated any
communication from the original programmer to his successors to

be one way, embedded in either the code itself, or comments
associated with it.
In contrast, projects today routinely involve a variety of
communication activities to support both the development and
maintenance of software. Smaller teams often manage by walking
into each others’ offices [4]. Larger teams may not be able to use
this tactic: team size alone means that developers will be more
dispersed. As teams grow larger and more distributed, other
complications for coordinating work emerge: establishing
common ground, time zone and cultural differences, handling
tightly coupled work, and so on [31].
There is a growing body of research aimed at understanding
coordination and collaboration issues in distributed software
development. Herbsleb and colleagues have carried out a number
of studies of development in industrial settings, documenting a
variety of coordination difficulties arising in globally distributed
teams. Explicit coordination mechanisms used in the integration
phase of a project included the overall plan, interface
specifications, documentation and process. They found that all of
the coordination mechanisms required filling in details, handling
exceptions, coping with unforeseen events and error recovery –
almost all of which required ongoing communication [22]. Grinter
[19] points to the additional coordination work required for
globally distributed reuse as falling into three areas: work to
traverse boundaries, the coordination necessary to align and
assemble multiple pieces of software, and the impact of
organizational and environment changes. Globally distributed
work consistently incurs a cost in time to complete over same-
site, which the authors attribute to the increased communication
needed to support coordination mechanisms working over
distance [24]. Lest we assume geo-spatial distribution is the only
culprit Perry and colleagues [32, 33] observed that even in same-
site work programming must share time with other ‘tasks’ (such
as meetings and email) that developers are expected to complete.
This requires that the technical work be interrupted and
distributed over time in ways that significantly impact
coordination and productivity.

F/LOSS projects provide another compelling view of distributed
development. As a development practice F/LOSS is demonstrably
successful, having produced robust, large-scale applications such
as the Linux Operating System, the Apache Web server, and the
Firefox Browser. Its success has attracted significant research
interest, since the open source process seems to violate many
previously-held assumptions of what is necessary for successful
large-scale development. Mockus and colleagues [30] examined
the development processes behind Apache and Mozilla. Others
have mined the wealth of F/LOSS data to examine software
processes as well as how the code functions as a socio-technical
artifact for negotiation [12, 13].
Only recently have researchers begun building on F/LOSS studies
by designing new collaboration support for software development.
Awareness tools embedded in development environments include
those explicitly meant to enhance F/LOSS development [10, 11,
20, 38] while others are applying lessons learned to industry [8].
Our work falls into this second category.

2.2 Change Management
Traditionally, research on software change requests has focused
on either the technical features of change tracking systems [26] or

on ways to automatically identify, manage and ideally reduce
defects [27]. (The notable exception is the use of bug tracking in
detailing a theory of coordination mechanisms [36].) The
debugging process also has been used to probe other issues in
software development, such as von Mayrhauser and Vans’ [29]
discussion of program understanding.
The trail of communication left by F/LOSS data has enabled an
expansion of research focus to include collaboration issues. For
example, Carstensen and colleagues’ [9] analysis found that “one
out of four bug reports required discussion and negotiation
between a tester and designer, or between the spec team and a
designer” (p10). Sandusky and Gasser [35] focus on how
negotiation and coordination are a critical part of software
problem management.
F/LOSS data have also enabled a more detailed empirical analysis
of communication than has heretofore been possible. Some
research has emphasized how “lean” the media used can be,
describing communication via text alone (whether IM, chat rooms
or email) [12, 17, 20]. This contrasts with other findings that
suggest that some development activities require face-to-face
interaction to be successful [9, 24, 31, 36].
Finally, analysis of F/LOSS data has also provided details on the
social aspects of coordination, leading to attempts to foster
support for more nuanced interaction. Cubranic et. al. [11]
exposed project history within an Eclipse integrated development
environment (IDE) to reduce the learning curve of newcomers.
Other work has argued that tools that explicitly support social
aspects of communication improve coordination [10, 21].

2.3 Visualization in Software Development
and Social Visualization
Work in visualization in the domain of software development has
mostly focused on technical aspects. Ball and colleagues [2]
argued that version control system data could be visualized in the
service of analyzing the evolution of a system over time. Pinzger
and colleagues [34] followed much the same line of reasoning,
using complex data models and condensed graphical views
(Kiviat diagrams) based on source code and release history to
identify critical trends in the evolution of very large software
systems (e.g., to identify candidates for refactoring). Closer to the
approach taken here, Eick and colleagues [16] designed a number
of visualization tools to “facilitate rapid exploration of high-level
structure in software change data and also serve as a powerful
visual interface to the data details” [33, pg. 396].
A different approach is to focus on task information in a way
intended to support social inference. In the “task proxy” described
by Erickson, Huang, Danis, and Kellogg [18], people are
displayed as hexagons arranged in terms of their place in an
organizational structure. The color of a hexagon represents the
status of that person with respect to a task (e.g., whether or not
they have completed it). This kind of representation is useful for
getting a quick overview of the state of a task across the
organization. If the task proxy is made visible to participants,
social dynamics emerge (e.g., peer pressure or proactively
assisting those who are lagging behind). While the task proxy is a
kind of social proxy because it represents people and activity, the
task is the focus and person information is backgrounded in the
visualization; what is seen at a glance is the state of the task.

More generally, interest in social visualization has grown over the
last decade. Ackerman and Starr [1] made one of the earliest
arguments for the utility of social visualizations based on
theoretical concerns in social psychology (e.g., social facilitation).
Defining ‘social activity indicators’ as displays conveying social
information such as the general level of activity, a view of what
others are doing, and so on, they distinguished their notion from a
more generalized notion of awareness, typified by, for example,
shared representations (then) or buddy lists (now). Several
researchers have explored the use of social visualization in
computer-mediated communication, including IBM’s work on
workgroup spaces such as Babble and Loops [6]. Donath’s work
on chat circles and other visualizations [14, 15], and Smith’s work
on Usenet authoring behavior [37]. This work has shown that
social visualizations can impact the quality of user experience
(e.g., Babble’s social proxy was associated with a “friendlier”
chat environment), can form a basis for inferences and work
practices that would otherwise be difficult to enact, and can
provide information that motivates (or de-motivates)
participation. One goal of the work reported here is to explore
how social visualization might be applied in change management.

3. APPROACH
Over the period of a year we collected two kinds of data from four
main sources. Collecting data from these sources was interleaved
with the design process and thus driven by the needs of the
process at a particular point in time.
Our first design ideas were sparked by conversations with a
colleague of one of the authors who is a driver (i.e., has oversight
responsibilities) in a major F/LOSS effort. His issues led to the
early focus on change tracking. We then carried out nine (9) semi-
structured and unstructured interviews, primarily via email and
instant messaging. All informants were programmers, some acting
primarily as individual contributors, others with management
responsibility. All were in multi-person development teams.
The interview covered the change tracking system being used in
the informant’s current project, its usefulness and how it could be
improved. We asked how informants decided what to work on
next, and about possible features such as visualization, alerts and
aggregate views that might assist them in this or more generally in
accomplishing their work. We also asked about the different roles
played by team members, whether they used the bug tracking
system differently, and what would make the system better for
people in different roles.
We carried out analyses of change tracking systems that were
identified by our informants. We looked at four existing systems
(CMVC, Bugzilla, ClearQuest, and Radar) as well as simple text
files, focusing on their functionality and organization.
Once design began in earnest we carried out an additional eleven
(11) interviews with programmers who self-identified as being in
large code development projects. These face-to-face interviews
were focused on three areas: a more detailed understanding of
work practices, unmet needs in the change tracking system being
used, and feedback on early prototypes of our visualizations.
Finally, for one change tracking system (Bugzilla), we also
analyzed particular CR samples, looking in detail at the kinds of
discussion that accompanied their (sometimes long) journeys
from initial filing to resolution. One can track the progress of a
CR by looking at the states it has passed through. In Bugzilla,

these states (Figure 1) typically include: unconfirmed (newly
entered into the change tracking system), new (a defect that has
been confirmed by an authorized person), assigned (a specific
individual has responsibility for resolving the defect), resolved
(assigned person submits a presumed fix), verified (fix has passed
testing) and reopened (a fix has failed testing).

Figure 1. Mozilla’s Bugzilla CR state-transition diagram

4. Findings
At their heart, change tracking systems are just repositories for
textual descriptions that have a number of attributes such as who
the change was filed by, who is assigned to work on it, its current
state (unconfirmed, assigned, resolved, verified, etc.), comments
and discussion, and more. Often they are customizable,
supporting a variety of approaches to software development. For
example, an increasingly common practice in F/LOSS (and
distributed projects more generally) is to “vet” a proposed fix
prior to incorporating it into the software. A developer devises a
piece of code to address the change request, then attaches it in the
form of a patch to its change request so that it can be vetted by
other developers. When the change is approved, it is checked into
the source code repository and the associated CR is updated.
Change tracking systems are a central mechanism for
coordination because they track the state of the project, the people
involved in its various parts, and contain discussion about
proposed changes. They provide a locus for managing and
prioritizing work, often through extended interactions that involve
debate among developers, reaching consensus, or soliciting
management input. They also comprise an historical record of a
team’s activity as development progresses. In discussing the
strengths and weaknesses of change tracking systems, our
informants described a variety of difficulties they had
encountered: problematic patterns in the course of resolving bugs,
bugs whose significance is not properly understood at first, and
more generally the complexities of understanding what is really
going on in the “n-dimensional space formed by bugs, code,
symptoms, people, and revisions” as one developer phrased it.
The picture of work that emerged from the interviews is one
characterized by deep and complex interdependencies among the
team members. In what follows, we provide a more detailed
account of our findings organized around two themes that
emerged from the interviews: coordination and history. We then
summarize key findings before turning to a description of the
visualizations.

4.1 The Social Enactment of Coordination
4.1.1 Avoiding Stepping on Each Other’s Toes
Many of our informants noted the importance of maintaining
knowledge of what other people on the team are doing. At a high
level, such knowledge enables developers to keep abreast of the
state of the code as it is developing. One of the technical
managers we interviewed, who has managed both small and large
teams, noted that having what he called a “bird’s eye view” was
particularly important in small teams where, ironically, there may
be more opportunities than in larger teams for “stepping on each
other’s toes” since developers typically work on multiple parts of
a project in parallel. With detailed knowledge of the work of
others, it is easier to anticipate how one’s own code will affect
and integrate with other code, and thus make “creating conflicts
unnecessarily” less likely.

New

Assigned Resolved Verified

Unconfirmed

Reopened
4.1.2 What (Who) Broke My Code?
Knowing who is doing what becomes particularly critical when a
developer’s code breaks as a consequence of someone else’s
work. While we noted above that awareness can help to avoid
breaking the code of others, several of our informants noted that
nevertheless this happens. When it does, it can be difficult to
diagnose what was the root cause. As one developer put it, there
is a need to figure out the “probability that is has to do with this
person.” The developer can track this down by figuring out who
has “touched” his components recently, but in most systems this
is time consuming and indirect.

4.1.3 Understanding New Bugs
When a new, unconfirmed defect is entered into a system, the first
order of business is to figure out what it is, where it belongs (i.e.,
to what programmer or code module it should be assigned),
whether it is a duplicate, and so on. Once a developer is assigned
to the bug or begins to fix it, s/he will have a more focused need
to find out what defects others are working on. One informant
noted that he would like “to find possibly-related bugs to the one I
am working on.” Because of the interdependencies in people’s
codes, finding the people working on related bugs is often critical
to fixing one’s own defect. In addition, several informants pointed
out that multiple related bugs could be a sign of a larger structural
issue with the code, potentially requiring redesign.

4.1.4 Complex Bugs
Many defects that occur, especially at a system level, require the
coordinated effort and skills of multiple people to fix. Knowing
where to assign defects that bridge between components is also
difficult. These sorts of complex bugs require not only finding the
set of people who need to work together to resolve them, but
coordinating the solution and how it will be implemented. Making
an analogous point in the case of cross-organizational code reuse,
Grinter [19] refers to this kind of work as ‘recomposition,’
meaning “all the coordination among a team of developers to
ensure that their code changes work together” (pg. 152).

4.1.5 Managing the Team
Managers have their own reasons for staying abreast of what is
going on across the development team. One of our small team
managers noted that it is important for him to see not only what
each team member is working on, but also to keep track of each
person’s work history. This helps him to manage each developer’s
workload and enables him to act more strategically to bring the

project to successful completion in spite of the quirks or
weaknesses of particular team members. Turnover in personnel or
changes in areas of responsibility are another reality that affects
managers and developers alike and have the potential for
significantly disruptive impacts.

4.2 The Social and Technical Life of Change
Management: Problematic Patterns
A second major theme that emerged from the interviews
concerned the value of historical information of bug lifecycle and
of individual team member activities. Several of our informants
described ways in which being aware of the behavior of bugs and
individuals or patterns of behavior were critical to the
development process. In the case of problematic bug patterns, this
was supplemented by our analyses of change tracking systems.

4.2.1 Ping Pong Patterns
Viewing Figure 1 more closely we see that a state machine
loosely governs how CRs move through change tracking systems.
Transitions between these states are generally not automatic,
instead requiring explicit human intervention to move a CR from
one state to another. In Mozilla’s Bugzilla repository, the best-
case path is from Unconfirmed to Verified, but many other paths
are possible and some of these paths, particularly if there are
recurrent loops, are potentially indicative of deeper problems.
For instance, CRs that are repeatedly resolved and reopened or
repeatedly reassigned (two kinds of “ping pong” as it was referred
to by our informants) are worth looking into more deeply. A
resolve/reopen cycle may mean that there is disagreement among
team members about what it means to fix the problem or
implement the feature – someone (perhaps several people) keeps
thinking the CR has been addressed and others feel that it has not.
An assign/reassign cycle, on the other hand, may mean that the
CR is not finding the right owner. Instead, each assignee looks at
the CR and decides that they aren’t the right person to work on it.
This could indicate a number of problems including a structural
problem in the software or an organizational gap. Ping pong
problems like these can be difficult to detect because as one
informant put it “if you look at the state [of a particular defect], it
always appears that someone is working on it, but in reality the
buck keeps getting passed and no progress is being made.”
Ping pong patterns can also be difficult to detect because in most
change tracking systems it is hard to assemble and see the
relevant information. For example, in Bugzilla, these are the
steps:
1. Use the query interface to find a CR of interest.
2. Navigate to the CR’s history page. The history is often a

long date-ordered list of every modification made to the CR
(Figure 2), including many changes that are not state changes
(e.g., annotations). Thus most lines in the history are not
relevant to identifying problematic patterns.

3. Filter the CR history to show only the specific modifications
needed to see a problematic pattern. Usually this means
throwing out everything but the state changes.

4. Read through the data and decide if a problem exists.
This process is complex enough that it is seldom used. In our
fieldwork, several people indicated that discovering problematic
patterns was difficult and that they could go undetected for long

periods of time to the detriment of the project. In CMVC, simply
generating a CR’s history is an expert-level task involving
multiple custom queries.

Figure 2. An example Bugzilla history for a specific CR,

showing one modification to the CR per line

4.2.1.1 Resolve-Reopen as a Cultural Issue
One informant recounted an experience in the cross-cultural use
of a change management system involving resolve-reopen. In this
case, a group of Chinese developers began using CMVC along
with American developers who were already experienced in using
it. The Chinese developers were used to a change tracking system
in which code patches were managed separately from bugs; thus
their practice was to mark a defect “resolved” when picking it up
to work on it – in a sense giving an “honor promise” to fix it, as
our informant called it. This led to confusion for American
developers who were used to marking bugs as resolved only when
the work was completed and the code attached. In addition,
CMVC integrates management of code revisions and bug
tracking; once defects are marked resolved, code can no longer be
attached. Thus, when a Chinese developer marked a defect as
resolved before revising the code, they were blocked from
attaching it when it was done. Until these differences in work
practice and their interaction with the change tracking system
were understood, American developers would reopen bugs
marked ‘resolved’ that did not have attached code. This led to
confusion on the Chinese side and a re-assertion of “resolved.”

4.2.1.2 Is It or Isn’t It a Bug? Assign-Reassign as a
Social Issue
In another situation described to us, a tester discovered a UI
problem, created a defect and assigned it to the UI developer. The
UI developer analyzed the defect and realized the problem was
deeper in the stack (an Enterprise Java Bean problem) and
assigned it to the EJB developer. The EJB developer analyzed the
problem and decided this was how the EJB backend was supposed
to operate, so returned the bug as resolved (“this is not a defect”).
The tester, noticing that the bug was marked ‘resolved,’ retested
it, determined that it was not fixed, and sent it back to the UI
developer, whereupon the cycle began again.
In this case, the assign-reassign pattern is more complex than the
simple case of a defect not finding the appropriate home, which

can occur because developers are too busy or not paying close
enough attention. Instead, this story reflects disagreement about
whether the UI consequence of the EJB backend will be treated as
a defect or not, and if so, how it should be resolved (e.g., by
redesign of the UI or of the backend).

4.2.2 What’s Falling through the Cracks and Why:
Prioritizing and Managing Work
Informants with management responsibility were particularly
tuned in to the risks of missing something important, letting a
defect go too long without resolution, or otherwise catching
problems that for whatever reason were falling through the cracks.
Although all development processes have mechanisms (like
severity codes) for managing such risks, they are not always
sufficient. There are a variety of problematic patterns in this
category; we describe some of them here.

4.2.2.1 Severity + Age
One of our informants with management responsibilities
maintains a query that shows defects sorted by severity combined
with age (an expert level task in the change tracking system he
uses). His goal is to make sure the team addresses “Sev 2”
assigned defects within 48 hours. When this doesn’t happen, there
can be a variety of reasons – from a developer waiting on
information or a response from another developer, to a messy bug
that requires redesign work that is not yet completed, to the
assigned developer simply being overloaded and unable to get to
it quickly. While some of the relationships among bugs may be
captured in dependency graphs (e.g., in Bugzilla), many “softer”
dependencies will never be codified. This increases the potential
utility of understanding what others are working on, and their
current workload.

4.2.2.2 Unevaluated Patches
Developers can move bugs to the ‘Resolved’ state but testers are
the only ones who have the power to close them (i.e., mark them
‘Verified’). In some development processes, an unevaluated patch
means the tester isn’t doing their job. In open source processes it
often means the driver isn’t doing their job. Either way,
unevaluated patches can indicate a problem in the process since a
fix will not be checked into the shipping product until it passes
testing.

4.2.2.3 Zombie Bugs
Zombie bugs are defects that have lain dormant for a (relatively)
long period of time. As one informant pointed out, “if your high
priority bugs are turning into zombies, there’s something wrong
with your project management.” Low priority bugs that turn into
zombies may not be a problem. However, being aware of zombie
bugs was reported as an important part of project housekeeping.

4.2.2.4 Bugs that Block Too Much
Another reason to move a defect up in priority for attention is the
amount of other work that is being blocked by it. As one
developer said in answer to our query about how he decides what
to work on next, “That’s a good question; because sometimes you
know you’re supposed to work on something but you really don’t
feel like it… [nevertheless] the high priority stuff that is keeping
people from doing their work is just that – high priority…[that’s]
the high order bit.”

4.2.2.5 Popular Bugs
Another dimension that is often hidden in current tracking
systems is what could be deemed the bug’s ‘popularity’–a
composite attribute reflecting the amount of interest a particular
CR is generating based on comments, subscribers, duplicates, and
votes. Another perspective is it shows the “wear” on a bug–who
touched, is interested, or argues for it [25]. Popularity gives the
development team another way to assess the impact fixing a
defect will have on the overall effort, or on the audience for the
software (e.g., customers, developer community).

4.2.3 Bug Reporting at the Wrong Level
We have previously discussed some of the common reasons that
CRs may begin to “ping pong.” An additional cause may be that
the individuals who report the CRs are reporting them at the
wrong level of detail. One value of being able to track the history
of the team’s behavior, especially for team leads or managers, is
to examine CRs from this standpoint. If a manager sees many CRs
that ping pong for a while and then end up getting decomposed
into multiple CRs, she may suspect a problem with reporting. As
one of the large team managers explained: “When a defect is
assigned, a number of things might be fixed and a lot of files
might be touched in order to address that one defect. This means
that the defect was too high-grain and should have been
decomposed into a number of bugs. A flag should be raised in this
case so folks are aware of this bug reporting issue.” Investigation
might reveal that over-broad reporting is attributable to one or
two individuals, in which case an intervention can be targeted.

4.3 Summary of Key Findings
To summarize, we can place the issues articulated by our
informants into the following three broad (though not mutually
exclusive) categories.

4.3.1 Technical Issues
On the one hand, there are still a number of technical issues in
software development that are just hard. “Ping pong” patterns in
assignment and resolution can result from a number of issues,
including complex bugs, not understanding new bugs, or gaps in
the structure of the code. Other issues include avoiding breaking
other people’s code, and figuring out what or who has broken
one’s own code.

4.3.2 Social and Cultural Issues
On the other hand, there are social and cultural issues that can
surface as the apparently same problematic patterns, as in the
conflicting work practices of the Chinese and American
development teams or whether a bug is really a bug. There are
also cases where working out technical issues involves social
information: avoiding breaking another person’s code
unnecessarily, figuring out what has caused your code to break
and who to talk to about it. We certainly heard stories (as in our
opening vignette) about developers who ended up wasting a lot of
time treating something as a technical problem that was really a
social or cultural problem.

4.3.3 Process and Management Issues
Finally, there are patterns of behavior that indicate issues with the
development process itself, or that require managerial attention.
These include reporting bugs at the wrong level and working
around less than optimal characteristics of team members.
Another set of issues revolves around monitoring the overall

development process and becoming aware of possible problems
based on severity+age, unevaluated patches, zombie bugs,
blocking bugs, or bug popularity.

5. Design Prototypes for Change
Management
We now turn to some of the visualizations we explored in
response to our fieldwork. We had two goals in developing the
prototypes: 1) to leverage information already contained in bug
tracking systems, but that was difficult for developers to get at;
and 2) to create visualizations that would address problems that
were significant for our informants as revealed by our fieldwork.
We felt visualizations could help with many of the issues
described above by making the history of a CR visible, by
exposing tracked details, and by aggregating different kinds of
data across CRs. We present two of the prototypes we developed
and discuss how they might be used by developers and managers
to address change management issues.

5.1 Work Item History Prototype
One of our earliest prototypes sought to expose the history of state
changes for individual bugs, which was so difficult to see in
existing bug tracking systems. We built a Java prototype showing
state changes over the past year for each bug (Figure 3). In this
visualization, each line corresponds to a bug, with each pixel
width representing a day. State changes are portrayed by color:
dark orange bars (A) in the display are reassigns, and green bars
(B) indicate when patches were provided. If the background is
orange (C), the CR is open and if it is white (D), the CR is closed
(resolved). Lastly, dark bars (E) show any of the myriad other
types of operations that can happen against a CR (comments,
dependencies changed, people added to cc: list, priority changed,
and so on). The higher the bar, the more of these operations
occurred on a given day.

Figure 3. Work Item History showing CR state changes over

the course of a year. Each line represents a single CR.

This prototype makes problematic patterns visible over time. For
instance, users might see that a bug had numerous resolve/reopen
cycles in the middle of the year but none recently. Or, they might
see that although a CR had repeated reassignments earlier in the
year, a recent patch could indicate that it might be nearly
resolved. The design also highlights CRs that go from high to no

activity (e.g., the fourth line in Figure 3). Such zombies might
represent CRs that are falling through the cracks, a repeated
concern of our informants. Work item history may also serve as a
basis for social inferences. With respect to our opening vignette
this view might provide the new programmer with the ability to
see patterns in the way his colleague handles bugs (i.e., by
inspecting bugs to which the colleague is assigned). While seeing
a pattern does not definitively diagnose or fix the problem,
drilling down further might help distinguish between technical
and social issues or point the programmer towards other
colleagues with whom to talk about the situation.
We validated this prototype by running it against data from the
Mozilla and Eclipse F/LOSS projects. The prototype indeed
exposed problematic patterns in both datasets, but we were
curious to know if there were CRs that exhibited the patterns to an
egregious extent. This appeared to be the case; examining the CRs
with the most resolve/reopens and assign/reassigns, in each
dataset we found between 20 and 30 CRs that had 4 or more
occurrences of these patterns within the year. This suggests that
our informants’ concern that things could fall through the cracks
was justified. While 20-30 CRs out of thousands2 represents a
very small proportion of the total, revealing the pattern helps to
ensure that someone notices that there might be a problem and
evaluates it.

5.2 Social Health Overview Prototype
The Work Item History prototype assured us that problematic
patterns existed in change tracking data and could be visualized.
But examining CR histories one at a time would not help
developers or managers responsible for many bugs, or for large
components or teams, monitor the overall progress of their
project. Some kind of interactive overview with drill down to
individual CRs seemed to be called for, particularly one that
might support coordination issues identified in our fieldwork. The
Social Health Overview prototype was designed to address these
needs and to extend the number of historical patterns that could be
viewed. It was developed in Java using the Piccolo framework
[3].
This prototype (Figure 4) provides a continuously zoomable view
of all open CRs in the dataset. The CRs are shown as circles and
laid end-to-end like a bar chart. The prototype displays data from
15 modules of the Eclipse Bugzilla database — a total of over
10,000 bugs.
Figure 4 shows a control panel on the left and the resulting
visualization of CRs on the right. The view is at a medium level
of detail where component names are not visible.3 From left to
right CRs are grouped by the Eclipse component to which they
belong, and are laid out according to the order, color and size
parameters of the control panel. In this case, the order is by
problematic pattern and the colors indicate different types of
problems, as shown in the key. For instance, green indicates an
unevaluated patch, brown indicates a zombie, dark grey is an
assign/reassign, and so forth. Circle size indicates the intensity of
the problem based on its “heat” (a composite measure based on all

2 The approximate number of CRs in the database snapshots used

for our prototypes.
3 Some usability issues like always displaying axis labels were not

easily coded in the tool being used for the prototypes.

seven of the patterns listed in the color key). CRs are ordered with
the highest intensity CRs at the bottom and becoming lower
intensity moving upwards.

Figure 4. Social Health Overview. This medium-level view
shows open CRs laid out end-to-end according to the settings
in the lefthand control panel: left to right by component
(rectangular groups of circles), and within component by
pattern (each pattern in a different color as indicated by the
key). Circle size represents the bug’s “heat,” a composite
metric based on the patterns represented in the color key.
Figure 5 shows the result of pointing at a particular CR in the
display. The fly out tag summarizes key information about the CR
including its id, name, component, assigned developer (or “inbox”
if it is unassigned), top issues, and “heat” index. In the most
recent version of this prototype users can click on a CR to bring
up its entry in the underlying change tracking system (here the
Bugzilla database for the Eclipse project). An intermediate step
before showing the Bugzilla entry might be to link to the Work
Item History visualization for the CR to enable a more detailed
inspection of patterns in its recent history.
The Social Health Overview may help developers and project
managers with the kinds of coordination issues described by our
informants. In terms of technical issues, problematic patterns can
be revealed relatively easily. The compactness of the visual
representation allows a large number of CRs to be monitored at a
glance, and the control panel allows particular patterns of interest
(e.g., unevaluated patches, or ping pong patterns) to be singled
out for inspection. The visualization can help address process and
management issues as well. For example, by ordering and
coloring bugs by assignee, a project manager can recognize
problems like numerous hot bugs in the inbox4 or team members
being overloaded; this is particularly useful when prioritizing
work and in load balancing across developers. The prototype can
also support social inferences that bear on social and cultural
issues. For example, with the resolve/reopen problem described
for the Chinese and American distributed team, a manager might
have noticed a large number of CRs with resolve/reopens in a
component being worked on by this team. Knowing that the
component involved a newly formed distributed team, the
manager might have suspected confusion in the team about the
process being used.

4 ‘Inbox’ is often the default assignee when there is no developer

assigned to work on the CR.

Figure 5. Social Health Overview: Flyover of a CR. Pointing
at a CR results in a fly out tag that summarizes key
information. Clicking on the CR will bring up its entry in the
underlying change tracking system.
The Social Health Overview can also support social inferences by
making it easier to see patterns associated with individual
developers. Figure 6 shows the Eclipse CRs within components
displayed by assignee. To someone just joining the project, such a
view can provide important orienting information about who to go
to for questions and issues about particular components. For more
seasoned team members, it can help identify who is working on
related bugs, or the people who need to coordinate a fix to a
complex CR.

Figure 6. Social Health Overview showing bugs grouped by
component and colored by assignee.
We are just beginning the process of more formally testing the
Social Health Overview, taking a multifaceted approach of a new
set of interviews aimed at eliciting an even more detailed
understanding of approaches to change management, laboratory
evaluation of the visualization vs. a traditional change tracking
system on a set of representative tasks, and a limited deployment
of the visualization “in the wild.” While the prototypes have been
shaped by what we learned from the fieldwork, only through
empirical evaluation will we be able to determine the extent to
which the prototypes succeed in improving the development
process as we envision.

6. DISCUSSION
Software development is a fundamentally collaborative process
― a characterization that many in both the CSCW and Software
Engineering communities have recognized. While techniques
such as extreme programming illustrate the power of tightly
coupled coordination, the majority of development situations are
distributed in space and time, while the code itself remains tightly
coupled.
Brown and Booch [8] characterize the non-coding practices
necessary to move software development forward as “points of

friction, because energy is lost in their execution which otherwise
could be directed to more creative activities that contribute
directly to the completion of the project’s mission.” This view
reinforces the observation of Perry and colleagues [33] that
programmers spend a large amount of time doing things other
than programming.
Of the six points of friction in the daily life of a developer
identified by [8], half involve coordination: a) inefficient work
product collaboration; b) maintaining effective group
communication, including knowledge and experience, project
status, and project memory; and c) stakeholder negotiation.
Our informants’ accounts elucidate both more detail about such
instances of friction and how they are problematic, leading us to a
richer understanding of current coordination issues in software
development. In this paper we have focused on specific patterns
that can be extracted from the data in change request systems that
address our informants’ concerns with understanding, managing,
and resolving change requests. Their reflections reveal how and
why collaboration may be inefficient — such as the culture clash
described in section 4.2.1.1.
These insights led us to develop a series of prototypes (not all
shown in this paper) intended to help developers visualize
potential problems along a number of dimensions including some
that were oriented around people, some that were oriented around
abstract notions of bug status (e.g., “heat,” a composite of several
problematic patterns), and others that were oriented around what
we characterize as fundamental entities of software development
(such as bugs and other change requests, components, and
libraries). Surfacing and aggregating many of the details
previously obscured in CR systems we open the opportunity to
detect where social issues interact with technical issues.
The most mature visualizations that were eventually produced
(exemplified by Figures 3-6) were oriented around fundamental
entities. We converged towards these visualizations based on
feedback from informants on what kind of visualization would be
most useful. Yet unlike some visualizations in the software
development domain oriented around fundamental entities, such
as versioning systems, our visualizations do make visible social
and task information, albeit in the background. After all, change
requests are tasks in themselves. In particular, the historical view
of bug state changes provides a resource for coordinating activity
― for an individual developer perhaps deciding what to work on
next; for a project manager, deciding where to focus the group’s
attention. The patterns of problematic bug states can be inspected
by all to see who is responsible for each state change, or to see
which individuals may be overloaded with work. It is the power
of this collective view of activity that can serve as social
motivation to get on with one’s own work and responsibilities [1]
and can make visualizations like Figures 3-6 more than just data
visualizations; they reflect the social processes at work.
In the final analysis, the change-oriented visualizations in Figures
3 (the Work Item History) and 4-6 (the Social Health Overview)
represent more advanced task proxies than that described by
Erickson and colleagues [18]. They portray multiple states rather
than just a single bit (done/not done), and provide a compact
representation of multiple change requests (tasks) rather than just
one per visualization. By providing an overview, they reveal
individual problematic patterns like ping pong. They can also
reveal problems that emerge from seeing the history of many

work items. As we discussed, the Social Health Overview
supports a number of ways that, for example, a project manager
can keep a process on track or improve it if need be.
As we continue this work we are exploring feedback that suggests
these visualizations might aid not only problem detection as it
develops incrementally, but also the detection of emergent
patterns across a large development effort. Preliminary feedback
suggests that this information provides better support for the
communication and coordination necessary to facilitate software
development. As we complete more direct and detailed evaluation
of these prototypes we aim to expose more details about how a
combination of social and task visualization can alter the work
practice of those involved in the development lifecycle and
provide better support for communication and coordination needs.

7. ACKNOWLEDGMENTS
Our thanks to the many developers and managers who took time
to talk with us, and particularly to John Vlissides, who will be
greatly missed as a brilliant and gracious colleague.

8. REFERENCES
[1] Ackerman, M. S. and Starr, B. Social activity indicators"
interface components for CSCW systems. In ACM Symposium on
User Interface Software and Technology (UIST). 1995.
(Pittsburgh, PA,159-168.
[2] Ball, T., Kim, J. M., Porter, A. A. and Siy, H. P. If your
version control system could talk. In International Conference on
Software Engineering (ICSE) Workshop on Process Modelling
and Empirical Studies of Software Engineering. 1997. (Boston,
MA,May 17-23).
[3] Bederson, B. B., Grosjean, J. and Meyer, J., Toolkit Design
for Interactive Structured Graphics. IEEE Transactions on
Software Engineering, 2004. 30,8 535-546.
[4] Bellotti, V. and Bly, S. Walking Away from the Desktop
Computer: Distributed Collaboration in a Product Design Team.
In CSCW96. 1996 ACM Press.
[5] Bowers, J. The work to make a network work: Studying
CSCW in action. In Conference on Computer Supported
Cooperative Work (CSCW). 1994. (Chapel Hill, NC., ACM Press,
287-298.
[6] Bradner, E., Kellogg, W. A. and Erickson, T. The adoption
and use of 'BABBLE': a field study of chat in the workplace. In
Proceedings of the Sixth European Conference on Computer-
Supported Cooperative Work. 1999. (Copenhagen, Denmark,
Kluwer Academic Publishers, 139-158.
[7] Brooks Jr., F. P., The Mythical Man-Month. 20th Anniversary
Edition ed. Addison-Wesley, Reading MA, 1995.
[8] Brown, A. W. and Booch, G., Collaborative Development
Environments, in Advances in Computers, Zelkowitz, M. V.,
Editor. 2003, Academic Press: San Diego, CA. p. 1-26.
[9] Carstensen, P. H., Sorensen, C. and Tuikka, T., Let's talk
about bugs! Scandanavian Journal of Information Systems, 1995.
7,1 33-54.
[10] Cubranic, D. and Murphy, G. C., Hipikat: Recommending
Pertinent Software Development Artifacts. IEEE, 2003.

[11] Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.(Learning
from Project History: A Case study for software development. In
CSCW. 2004. (Chicago, Ill., ACM.
[12] deSouza, C., Frohlich, J. and Dourish, P. Seeking the Source:
Software Source Code as a Social and Technical Artifact. In
GROUP 05. 2005. (Sanibel Island,November 2005) ACM, 197-
202.
[13] deSouza, C., Redmiles, D. and Dourish, P. "Breaking the
Code": Moving between private and public work in collaborative
software development. In GROUP. 2003. (Sanibel Island, FL.,
ACM Press, 105-114.
[14] Donath, J., Karahalios, K. and Biegas, F. Visualizing
Conversation. In Thirty Second Hawai'i International Conference
on Systems Science. 1999. (Maui, Hawaii, IEEE Computer
Society Press.
[15] Donath, J. and Viegas, F. The chat circles series:
Explorations in designing abstract graphical communication
interfaces. In Designing Interactive Systems (DIS). 2002 ACM
Press.
[16] Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A. and
Schuster, P., Visualizing Software Changes. Transactions on
Software Engineering, 2002. 28,4 396-412.
[17] Elliot, M. S. and Scacchi, W. Free software developers as an
occupational community: Resolving conflicts and fostering
collaboration. In GROUP '03. 2003. (Sanibel Island, FL,,Nov
2003).
[18] Erickson, T., Huang, W., Danis, C., and Kellogg, W.A. A
social proxy for distributed tasks: Design and evaluation of a
prototype. Proc. CHI 2004, ACM Press (2004), 559-566.
[19] Grinter, R. E. From Local to Global Coordination: Lessons
from Software Reuse. In GROUP 01. 2001. (Boulder, CO,Sept
30-Oct 3) ACM Press, 144-153.
[20] Gutwin, C., Penner, R. and Schneider, K. Group Awareness
in Distributed Software Development. In CSCW 2004. 2004.
(Chicago IL,72-81.
[21] Halverson, C. A., Erickson, T. and Sussman, J. What counts
as sucess? Rhythmic patterns of use in a persistent chat
environment. In GROUP 03. 2003. (Sanibel Island, FL.,Nov
2003).
[22] Herbsleb, J. D. and Grinter, R. E. Splitting the organization
and integrating the code: Conway's law revisited. In International
Conference on Software Engineering (ICSE). 1999. (Los Angeles,
CA,May 16-22)85-95.
[23] Herbsleb, J. D. and Mockus, A. Formulation and Preliminary
Test of an Empirical Theory of Coordination in Software
Engineering. In ESEC/FSE. 2003. (Helsinki, Finland, ACM, 138-
147.
[24] Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E.
Distance, dependencies and delay in a global collaboration. In
Conference on Computer Supported Cooperative Work (CSCW).
2000. (Philadelphia, PA,December 1-6)319-328.

[25] Hill, W. C., Hollan, J. D., Wroblewski, D. and McCandless,
T. Edit Wear and Read Wear. In Conference on Human Factors
in Computing Systems (CHI). 1992. (Monterey, CA., ACM Press,
3-9.
[26] Knudsen, D. B., Barofsky, A. and Satz, L. R. A Modification
Request Control System. In International Conference on Software
Engineering (ICSE). 1976. (San Francisco, CA, IEEE Computer
Society, 187-192.
[27] Leszak, M., Perry, D. E. and Stoll, D. A case study in root
cause defect analysis. In International Conference on Software
Engineering. 2000. (Limerick, Ireland, ACM Press, 428-437.
[28] Malone, T. W. and Crowston, K., The Interdisciplinary Study
of Coordination. ACM Computing Surveys, 1994. 26,1 (March
1994), p. 87-119.
[29] Mayrhauser, A. v. and Vans, A. M. Program understanding
behavior during Debugging of Large Scale Software. In Seventh
Workshop on Empirical Studies of Programmers. 1997 ACM
Press, 157-179.
[30] Mockus, A., Fielding, R. T. and Herbsleb, J. D., Two Case
Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 2002. 11,3 (July 2002), p. 309-346.
[31] Olson, G. and Olson, J. S., Distance Matters. Human
Computer Interaction, 2000. 15,2/3 139-178.
[32] Perry, D. E., Siy, H. P. and Votta, L., Parallel changes in
large-scale software development: An observational case study.
Transactions on Software Engineering and Methodology
(ToSEM), 2001. 10,3 (July, 2001), p. 308-337.
[33] Perry, D. E., Staudenmayer, N. and Votta, L., People,
organizations and Process Improvement. IEEE Software, 1994.
11,4 (July, 1994), p. 36-45.
[34] Pinzger, M., Gall, H., Fischer, M. and Lanza, M. Visualizing
multiple evolution metrics. In ACM Symposium on Sofware
Visualization (SoftVis). 2005. (St. Louis, MO,May 14-15) ACM
Press, 67-75.
[35] Sandusky, R. J. and Gasser, L. Negotiation and the
Coordination of Information and Activity in Distributed Software
Problem Management. In GROUP 05. 2005. (Sanibel Island
FL,Nov 2005).
[36] Schmidt, K. and Simone, C., Coordination mechanisms:
towards a conceptual foundation of CSCW systems design.
Journal of Computer Supported Cooperative Work (JCSCW),
1996. 5,2/3 155-200.
[37] Smith, M. and Fiore, A. Visualization components for
persistent conversation. In Human Factors in Computing Systems
(CHI). 2001. (Seattle WA,3/31 - 4/5) ACM Press.
[38] Storey, M. A., Cubranic, D. and German, D. M. On the use
of visualization to support awareness of human activities in
software development: A survey and framework. In ACM
Symposium on Software Visualization (SoftVis). 2005. (St. Louis,
MO., ACM Press, 193-216.

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Programming as a Cooperative Activity
	2.2 Change Management
	2.3 Visualization in Software Development and Social Visualization

	3. APPROACH
	4. Findings
	4.1 The Social Enactment of Coordination
	4.1.1 Avoiding Stepping on Each Other’s Toes
	4.1.2 What (Who) Broke My Code?
	4.1.3 Understanding New Bugs
	4.1.4 Complex Bugs
	4.1.5 Managing the Team

	4.2 The Social and Technical Life of Change Management: Problematic Patterns
	4.2.1 Ping Pong Patterns
	4.2.1.1 Resolve-Reopen as a Cultural Issue
	4.2.1.2 Is It or Isn’t It a Bug? Assign-Reassign as a Social Issue

	4.2.2 What’s Falling through the Cracks and Why: Prioritizing and Managing Work
	4.2.2.1 Severity + Age
	4.2.2.2 Unevaluated Patches
	4.2.2.3 Zombie Bugs
	4.2.2.4 Bugs that Block Too Much
	4.2.2.5 Popular Bugs

	4.2.3 Bug Reporting at the Wrong Level

	4.3 Summary of Key Findings
	4.3.1 Technical Issues
	4.3.2 Social and Cultural Issues
	4.3.3 Process and Management Issues

	5. Design Prototypes for Change Management
	5.1 Work Item History Prototype
	5.2 Social Health Overview Prototype

	6. DISCUSSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

